Red Rose Senior Secondary School Class: XII Subject:MATHS Chapter : 1 (Relations and Function)

- 1. Show that the relation R defined by $(a, b) R(c, d) \rightarrow a + d = b + c$ on the set $N \times N$ is an equivalence relation. (4) [2008]
- 2. Let * be a binary operation on N given by $a * b = HCF(a, b) \ a, b \in N$. Write the value of 22 * 4.

(1) [2009]

3. Let
$$f: N \rightarrow N$$
 be defined by $f(n) = \begin{cases} \frac{n+1}{2}, & \text{if } n \text{ is odd} \\ \frac{n}{2}, & \text{if } n \text{ is even} \end{cases}$ Find whether

the function f is bijective.

4. If f : R → R be defined by $f(x) = (3 - x^3)^{1/3}$, then find of *fof(x*). (1)[2010]

- 5. Show that the relation S defined on the set $N \times N$ by (a, b) S (c, d) \Rightarrow a + d = b + c, is an equivalence relation. (4) [2010]
- 6. Show that the relation S in the set $A = \{x \in Z : 0 \le x \le 12\}$ given by S = $\{(a, b): a, b \in Z, |a - b| \text{ is divisible by 4}\}$ is an equivalence relation. Find the set of all elements related to 1. (4) [2010]
- 7. Let A = {1, 2, 3}, B = {4, 5, 6, 7} and let f = {(1, 4), (2, 5), (3, 6)} be a function from A to B. State whether f is one-one or not. (1) [2011]
- 8. Let f: $R \rightarrow R$ be defined as f(x) = 10x +7. Find the function $g: R \rightarrow R$ such that $gof = fog = I_R$

(4) [2011]

9. A binary operation * on the set (0, 1, 2, 3, 4, 5} is defined as: $a * b = \begin{cases} a + b, if a + b < 6 \\ a + b - 6, if a + b \ge 6 \end{cases}$

show that zero is the identity for this operation and each element 'a' of the set is invertible with 6-a, being the inverse of 'a'. (4) [2011]

(4) [2009]

- **10.** The binary operation $*: R \times R \rightarrow R$ is defined as a * b = 2a + b. Find (2 * 3) * 4. (1) [2012]
- 11. Show that $f: N \rightarrow N$, given by $f(x) = \begin{cases} x + 1, & \text{if } x & \text{is odd} \\ x - 1, & \text{if } x & \text{is even} \end{cases}$ is both one-one and onto. (4) [2012]
- 12. Consider the binary operation $*: R \times R \rightarrow R$ and $o: R \times R \rightarrow R$ Defined as a * b = |a - b| and $a \circ b = a$ for all $a, b \in R$. Show that '*' is commutative but not associate, 'o' is associative but not commutative. (4) [2012]
- **13.** Consider $f: R + \rightarrow (4, \infty)$ given by $f(x) = x^2 + 4$. Show that f is invertible with the inverse f¹ of f given by $f^{-1}(y) = \sqrt{y-4}$, where R₊ is the set of all non-negative real numbers. (4) [2013]
- 14. If $R = \{(x, y) : x + 2y = 8\}$ is a relation on N, write the range of R. (1) [2014]
- 15. If the function $f : R \rightarrow R$ be given by $f(x) = x^2 + 2$ and $g : R \rightarrow R$ be given by $g(x) = \frac{x}{x-1}, x \neq 1$, find fog and gof and hence find fog(2) and gof(-3). (4) [2014]
- 16. Consider $f: R_+ \to [-9, \infty]$ given by $f(x) = 5x^2 + 6x 9$. Prove that f is invertible with $f^{-1}(y) = \langle \frac{\sqrt{54+5y}-3}{5} \rangle$ (6) [2015] 17. A binary operation * is defined on the set $x = R - \{-1\}$ by $x * y = x + y + xy, \forall x, y \in X$ check whether * is commutative and associative. Find its identity element and also find the inverse of each element of X. Or Show that the binary operation * on $A = R - \{-1\}$ defined as a * b = a + b + ab for all $a, b \in A$ is commutative and associative on A. Also find the identity element of * in A and prove
 - that every element of A is invertible. (6) [2016]

- 18. Show that the relation R in the set $A = \{1, 2, 3, 4, 5\}$ given by $R = \{ (a, b) : |a b| \text{ is divisible by } 2 \}$ is an equivalence relation. Write all the equivalence classes of R. (4) [2015 Comptt.]
- 19. Let $A = Q \times Q$ and let * be a binary operation on A defined by (a, b) * (c, d) = (ac, b + ad) for $(a, b), (c, d) \in A$. Determine, whether * is commutative and associative with respect to * on A.
 - i) Find the identity element in *A*.
 - ii) Find the invertible element of *A*.

Or Consider $f: R - \left\{-\frac{4}{3}\right\} \to R - \left\{\frac{4}{3}\right\}$ given by $f(x) = \frac{4x+3}{3x+4}$. Show that fis the bijective. Find the inverse of f and hence find $f^{-1}(0)$ and xsuch that $f^{-1}(x) = 2$. **6[2017]**

20. Given a non-empty set X, consider the binary operation $*: P(X) \times P(X) \rightarrow P(X)$ given by $A * B = A \cap B, \forall A, B \in P(X)$, where P(X) is the power set X. show that * is commutative and associative and X is the identity element for this operation and X is the only invertible element in P(X) with respect to the operation *. Or

Let $f: R - \{-\frac{4}{3}\} \to R$ be a function defined as $f(x) = \frac{4x}{3x+4}$. Show that f is a one-one function. Also check whether f is an onto function or not. Hence find f^{-1} in (range of f) $\to R - \{-\frac{4}{3}\}$. 6 [2017]

- 21. If a * b denotes the larger of 'a' and 'b' and if aob = (a + b) + 3, then write the value of (5)o(10), where * and o are bnary operation. **1 [2018]**
- 22. Let $A = \{x \in Z : 0 \le x \le 12\}$. show that $R = \{(a, b) : a, b \in A, |a b| \text{ is divisible by } 4\}$ is an equivalence relation. Find the set of all elements related to 1. Also the equivalence class [2].

Show that the function $f: R \to R$ defined by $f(x) = \frac{x}{x^2+1}$, $\forall x \in R$ is neither one-one nor onto. Also, if $g: R \to R$ is defined as g(x) = 2x - 1, find $f \circ g$. **6** [2018]

22. Examine whether the operation * defined on **R**. the set of all real numbers, by $a * b = \sqrt{a^2 + b^2}$ is a binary operation or not, and if it is a binary operation, find whether it is associative or not.

2 [2019].

23. Check whether the relation *R* defined on the set $A = \{1,2,3,4,5,6\}$ as $R = \{(a, b): b = a + 1\}$ reflexive, symmetric or transitive.

or

Let $f: N \to Y$ be a function defined as f(x) = 4x + 3, where $Y = \{y \in N: y = 4x + 3, for some x \in N\}$. Show that f is invertible. Find its inverse. **4 [2019].**

By: Nitin Sir